Avoiding order reduction when integrating nonlinear Schrödinger equation with Strang method
نویسندگان
چکیده
منابع مشابه
Avoiding order reduction when integrating nonlinear Schrödinger equation with Strang method
In this paper a technique is suggested to avoid order reduction when using Strang method to integrate nonlinear Schrödinger equation subject to time-dependent Dirichlet boundary conditions. The computational cost of this technique is negligible compared to that of the method itself, at least when the timestepsize is fixed. Moreover, a thorough error analysis is given as well as a modification o...
متن کاملModel order reduction for nonlinear Schrödinger equation
We apply the proper orthogonal decomposition (POD) to the nonlinear Schrödinger (NLS) equation to derive a reduced order model. The NLS equation is discretized in space by finite differences and is solved in time by structure preserving symplectic midpoint rule. A priori error estimates are derived for the POD reduced dynamical system. Numerical results for one and two dimensional NLS equations...
متن کاملAvoiding order reduction when integrating diffusion-reaction boundary value problems with exponential splitting methods
In this paper, we suggest a technique to avoid order reduction in time when integrating reaction-diffusion boundary value problems under non-homogeneous boundary conditions with exponential splitting methods. More precisely, we consider Lie-Trotter and Strang splitting methods and Dirichlet, Neumann and Robin boundary conditions. Beginning from an abstract framework in Banach spaces, a thorough...
متن کاملPeriodic waves of a discrete higher order nonlinear Schrödinger equation ∗
The Hirota equation is a higher order extension of the nonlinear Schrödinger equation by incorporating third order dispersion and one form of self steepening effect. New periodic waves for the discrete Hirota equation are given in terms of elliptic functions. The continuum limit converges to the analogous result for the continuous Hirota equation, while the long wave limit of these discrete per...
متن کاملForced nonlinear Schrödinger equation with arbitrary nonlinearity.
We consider the nonlinear Schrödinger equation (NLSE) in 1+1 dimension with scalar-scalar self-interaction g(2)/κ+1(ψ*ψ)(κ+1) in the presence of the external forcing terms of the form re(-i(kx+θ))-δψ. We find new exact solutions for this problem and show that the solitary wave momentum is conserved in a moving frame where v(k)=2k. These new exact solutions reduce to the constant phase solutions...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 2017
ISSN: 0377-0427
DOI: 10.1016/j.cam.2016.09.033